画像処理ソリューション
これを見れば画像処理の入門から基礎~応用まで全てがわかるのを目指して!
   
翻訳(Translate)

プロフィール

Akira

ニックネーム:Akira
東京都の町田事業所に勤務
画像処理ソフトの開発を行っています。リンクフリーです!
詳細プロフィールは こちら
お問い合わせは、こちら↓

【補助HP】
画像処理ソリューションWeb版 【Newブログ】
イメージングソリューション

スポンサーリンク


カテゴリ

最近のコメント

カレンダー

03 | 2017/04 | 05
S M T W T F S
- - - - - - 1
2 3 4 5 6 7 8
9 10 11 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 - - - - - -

趣味のブログ

iPhone萬歳!
iPhoneの情報いろいろ。
ブログ学習帳
ブログ、SEO、アフィリエイト情報など(まだまだこれから)
俺流クラフト日記
ハンドメイド作品の記録(現在、放置中)

スポンサーリンク 最近の記事
(09/18)  計測測定展に光切断のデモを出展しました
(08/17)  ディジタル画像技術事典200に記事が載りました
(06/09)  光切断を画像センシング展で公開
(05/14)  中国(上海)へ行って来ました
(04/12)  韓国へ行って来ました
(03/10)  私の求める新人像
(01/18)  エレクトロテストジャパンにカラー光切断法のデモを出展しました。
(12/23)  ユニークアクセス200万達成!
(12/10)  【カラー光切断法】YouTube動画まとめ
(11/04)  国際画像機器展2014にカラー光切断法を出展します。
(10/05)  第25回コンピュータビジョン勉強会@関東に参加してきました。
(09/08)  フーリエ変換の記事を追加しました。
(08/09)  【画像処理】ランキング低下中
(07/06)  記事の更新が停滞中...
(06/08)  画像センシング展2014でカラー光切断法のデモを行います。
(05/17)  カラー光切断法の動画を公開しました。
(04/30)  ソニーα NEX-5Rで星空撮影
(04/10)  カラー光切断法の取込結果を追加しました
(03/08)  Korea Vision Show 2014へ行ってきました
(02/05)  フーリエ変換シリーズを始めます。
(01/06)  2014年、あけましておめでとうございます。
(12/04)  カラー光切断法を公開(国際画像機器展2013にて)
(11/13)  国際画像機器展2013に出展します
(10/14)  「画像処理のためのC#」はじめます。
(09/16)  【C#,VB.NET】高速描画コントロールをバージョンアップしました。
(09/04)  拡大鏡に輝度値表示、ルーラー機能を追加した個人ツールを公開
(08/05)  7月の拍手Top5
(07/06)  2013年6月人気記事Top5
(05/12)  SONY α NEX-5Rレビュー
(04/24)  SONY α NEX-5RY購入

奇関数、偶関数

 奇関数                         
  
  
f (-x) = - f(x)

となる関数。

関数のグラフが原点に対して対象となります。
  
奇関数グラフ

【例】
  Y = X, Y = X3, Y = Sinθ など

【特徴】
  -a ~ aの範囲で積分すると

  奇関数の積分
  となります。


 偶関数                         

  f (-x) = f(x)

となる関数。

関数のグラフがY軸に対して対象となります。
  偶関数グラフ


【例】
  Y = X2, Y = X4, Y = Cosθ など

【特徴】
  -a ~ aの範囲で積分すると

  偶関数の積分

  となります。

この偶関数・奇関数の特徴を応用すると、プログラム上ではfor文などで毎回計算するような処理をより高速に行うことが可能になる場合があります。
その応用例は最小二乗法の最適化のページで、
また、この
関数、奇関数を応用するための工夫を偶関数、奇関数の積分で紹介しています。
もしよろしければご参照下さい。


Loading...
スポンサーリンク

この記事に対するコメント

この記事に対するコメントの投稿














管理者にだけ表示を許可する


この記事に対するトラックバック
トラックバックURL
→http://imagingsolution.blog107.fc2.com/tb.php/18-fb470487
この記事にトラックバックする(FC2ブログユーザー)

現在の閲覧者数: / 合計